

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO CENTRO DE FÍSICA APLICADA Y TECNOLOGÍA AVANZADA Y FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN

Carrera: Licenciatura en Tecnología

Programa de la Asignatura: Álgebra Avanzada

Clave: No. de créditos: 10 Semestre: 6°, 7° u 8°

DURACIÓN DEL CURSO:

Semanas: 16

Horas a la semana: 5 (Teoría: 5, Prácticas: 0) Horas totales al semestre: 80 (Teoría: 80, Prácticas: 0)

Carácter de la asignatura: Optativo.

Modalidad: Curso.

Tipo de asignatura: Teórico.

Tronco de desarrollo: Terminal.

Área de conocimiento: Matemáticas.

OBJETIVO

Presentar al alumno las principales propiedades de sistemas algebraicos.

ALCANCE

El alumno conocerá los aspectos básicos de teoría de grupos, sus representaciones y su conexión con las simetrías en sistemas físicos, químicos y biológicos.

REQUISITOS

El alumno debe tener conocimientos de Álgebra lineal.

ASIGNATURAS ANTECEDENTES SUGERIDAS:

Álgebra Lineal y Geometría Analítica.

ASIGNATURAS CONSECUENTES SUGERIDAS:

Ninguna.

CFATA Y FESC, UNAM

TÉCNICAS DE ENSEÑANZA SUGERIDAS:

Exposición oral (x)
Exposición audiovisual (x)
Ejercicios dentro de clase (x)
Ejercicios fuera del aula (x)

TÉCNICAS DE EVALUACIÓN SUGERIDAS:

Exámenes parciales(x)Examen final(x)Trabajos y tareas fuera del aula(x)Participación en clase(x)

PERFIL PROFESIOGRÁFICO DE QUIENES PUEDEN IMPARTIR LA ASIGNATURA:

Profesor con estudios de posgrado (maestría o doctorado) en ciencias o áreas afines con una fuerte preparación matemática.

Licenciatura en Tecnología

TEMAS:		# HORAS	
I II III	Tensores. Teoría de grupos. Anillos.		20 40 20
		Total horas	80

REFERENCIAS DEL CURSO

M. Hammermesh,

Group Theory and its applications to physical problems.

Dover, 1962.

Murray R. Spiegel,

Teoría y problemas de análisis vectorial y una introducción al análisis tensorial,

Bibliografía Complementaria

I.N Herstein,

Topics in Algebra,

2nd. Edition, John Wiley&Sons.

D. Kay,

Teoría y problemas de Cálculo Tensorial,

McGraw Hill (1990).

I. Stewart,

Galois Theory,

London, Chapman and Hall (1973).

Luis A. Santaló,

Vectores y tensores con sus aplicaciones,

Editorial universitaria de Buenos Aires (1970).

Fred A. Hinchey,

Vectores y Tensores,

Editorial Limusa (1979).

J.H. Heinbockel,

Introduction to tensor calculus and continuum mechanics.

M. I. Pietrashen y Ie.D. Trifonov,

Teoría de grupos. Aplicación a la Mecánica Cuántica.

Ed. Mir. Moscú. 2000.

CFATA Y FESC, UNAM

J. Fuchs y C. Schweigert,

*Symmetries, Lie Algebras and representations.*Cambridge Monographs on Mahematical Physics, 2003.

R. Gilmore,

Lie groups, Lie algebras and some of their applications. Wiley-Interscience Pub. 1974.

H. Weyl,

*The Theory of Groups and Quantum Mechanics.*Dover Publications.

Wu-Ki Tung,

Group Theory in Physics, World Scientific, 1985.

M. Aivazis, W.K. Tung,

Group Theory in Physics. Problems and Solutions, World Scientific, 1991.

CONTENIDO DE LOS TEMAS DEL CURSO

Unidad	Тета	Horas Clase
I	Tensores.	20
	Definiciones y ejemplos.	
	Repaso de vectores.	
	Algunos productos de vectores:	
	 producto escalar o contracción, 	
	• producto vectorial,	
	producto mixto,producto diádico o tensorial.	
	 Transformaciones ortogonales. 	
	 Invariantes. 	
	Tensores isotropos.	
	 Producto interior de tensores. 	
	 Producto exterior de tensores. 	
	 Todacto exterior de tensores. Tensores de segundo orden. 	
	Tensores de segundo orden. Tensores en coordenadas curvilíneas.	
	 Diferenciación de tensores cartesianos. 	
	Teorema de Hamilton-Cayley.	
	Aplicaciones en Electromagnetismo y Relatividad.	
II	Teoría de Grupos.	40
	Definiciones y ejemplos.	
	Grupos simétricos.	
	Isomorfismo.	
	Grupo de permutaciones.	
	Homomorfismo.	
	Subgrupos.	
	Clases de elementos conjugados.	
	Producto directo de grupos.	
	Representaciones de grupos.	
	 Álgebra de un grupo. 	
	• Grupos continuos en una dimensión: SO(2) y T1.	
	• El grupo de rotaciones en el espacio 3D: SO(3).	
	• SU(2) y SU(n).	
	El grupo de Lorentz.	
	Álgebras de Lie.	
	Álgebras de Clifford.	

CFATA Y FESC, UNAM

III	Anillos.	20
	 Definiciones y ejemplos. 	
	 Resolución de ecuaciones algebraicas. 	
	 Extensiones algebraicas y trascendentes de campos. 	
	Divisibilidad en anillos.	
	Criterios de irreducibilidad.	
	Ideales y anillos cocientes.	
	 Continuación con teoría de campos. 	
	• Extensiones algebraicas separables e inseparables de campos.	
	 Extensiones de campos normales y de Galois. 	
	Teorema de Galois.	
	 Aplicaciones en Física y en Química. 	